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ABSTRACT: The impact of adding US and Canada 
genomic information to the imputation of Mexican Holstein 
genotypes was measured by comparing 3 scenarios: 1) 
2,018 Mexican genotyped animals; 2) animals from 
scenario 1 plus 886 related North American animals; and 3) 
animals from scenario 1 and all North American genotyped 
animals (338,073). Four different chip densities were 
imputed to 45,195 markers using findhap software. 
Imputation success was measured by comparing the number 
of SNP half (HM), completely missing (CM) and conflicts. 
Imputation accuracy was improved when numbers of 
markers and genotyped animals were increased. The HM 
average was greater than the CM average for all scenarios. 
The largest number of different SNP filled (conflicts) was 
found between scenarios 1 and 3. The inclusion of genomic 
information of parents with daughters in the destination 
population improved accuracy imputation as did the 
inclusion of all available genotypes. 
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Introduction 
 

Increased reliability of genomic predictions is a 
highly sought-after result when using genomic information. 
To improve reliability calculations, increasing the number 
of genotyped animals is more important than using higher 
density panels for the reference population (VanRaden et al. 
(2010)). Unfortunately, genotyping is still expensive, 
especially in populations like the Mexican Holstein. 
Because high-density panels generally are more expensive 
than low-density panels, using the latter is an alternative 
that may lead to more genotyped animals. To use different 
marker densities, the information must be combined using 
imputation to predict missing genotypes of animals 
genotyped with lower density panels from genotype 
information of relatives or haplotypes of a population 
previously genotyped with higher density panels (Druet et 
al. (2010); VanRaden et al. (2010)). Different imputation 
methods with high accuracy have been implemented 
(Browning and Browning (2011); VanRaden et al. (2011); 
Hickey et al. (2012)); the choice of the optimal method 
depends on population structure (Johnston et al. (2011)).  

 
Using imputation as part of genomic selection 

reduces genotyping costs and increases both the size of the 
reference population and the number of markers for which 
effects are estimated, thereby increasing the accuracy of 

genetic predictions and consequently the expected genetic 
improvement. Furthermore, reducing genotyping cost 
makes the technology more accessible to breeders (Berry et 
al. (2011); VanRaden et al. (2011)). For dairy cattle, 
reliability for genomic predictions using imputation varies 
according to trait and population size and structure. 
Reliability improvements of approximately 2 percentage 
points have been reported in simulation studies that 
included imputed genotypes compared with using a 50,000-
marker subset (VanRaden et al. (2011)). 

 
Currently genetic material from US and Canada 

dairy cattle is widely used around the world. Using 
genotypes for these animals for imputation could be a key 
point for the success of genomic evaluations and genetic 
progress in many countries. The objective of this study was 
to measure the impact of adding US and Canadian genomic 
information in the imputation of Mexican Holstein 
genotypes. 
 

Materials and Methods 
 

Scenarios. Three imputation scenarios were set up 
based on source and number of genotyped animals. For 
scenario 1, only genotypes of a local population of 2,018 
genotyped Mexican Holsteins were included. For scenario 
2, genotypes of animals in scenario 1 and genotypes of 866 
North American Holsteins with genotyped Mexican 
daughters were included. For scenario 3, genotypes of 
animals in scenario 1 and all North American genotyped 
animals were included. 
 

Genotypes. The Mexican Holstein population 
included a total of 1,978 cows and 40 sires from the 
Mexican conventional system were genotyped. For cows, 
183 were genotyped with the Illumina BovineLD BeadChip 
v1.1 (6K), 277 with the GeneSeek Genomic Profiler LD 
BeadChip (9K), 686 with the Illumina BovineSNP50 
BeadChip (50K), and 825 with the GeneSeek Genomic 
Profiler HD BeadChip (77K). All Mexican sires had 50K 
genotypes. From the North American database, 839 sires 
and 47 dams had genotyped progeny in Mexico and were 
included in scenario 2. All females in this group had 50K 
genotypes. Of the foreign sires with 50K genotypes, 533 
were from the United States, 270 were from Canada, and 22 
were from European countries; 14 sires had 77K genotypes: 
10 from the United States and 4 from Canada. For scenario 



3, a total of 338,073 North American animals were included 
in the analysis. 
  

Pedigree information. Two different pedigree 
files were used in the analysis. One with 27,625 animals 
was used for scenarios 1 and 2; the other used for scenario 3 
contained 938,662 animals. 
 

Imputation. Missing genotypes were predicted by 
combining population and pedigree haplotypes with findhap 
software (VanRaden et al. (2011)). The imputation goal for 
the 3 scenarios was to fill in any missing genotypes from 
the 45,195 markers from 50K chip that is used in U.S. 
genomic evaluations. First, genotypes were recoded as 0 = 
BB, 1 = AB, 2 = AA, 3 = B and unknown maternal allele, 4 
= A and unknown paternal allele, and 5 = both alleles 
unknown (VanRaden (2011)). Then the imputation for each 
scenario was performed, and the results were compared 
using SAS software (SAS (2009)). Imputation reliability, 
missing genotypes, and different filled markers or conflicts 
between scenarios were used for comparison. The 
imputation process is not always able to determine the 
genotype for a SNP. If neither parental contribution can be 
determined the genotype is designated as completely 
missing (genotype code of 5). If only one parental 
contribution can be determined, then the genotype is 
designated as half missing (code 3 or 4). 

 
To test which imputed genotypes were more 

similar to true genotypes for scenarios 1 and 2, 10 groups of 
samples, each with 10 50K genotypes, were selected 
randomly. Non-6K and non-9Kmarkers were excluded, and 
the genotypes were filled through imputation. True and 
imputed genotypes were then compared for HM and CM 
markers. This validation was not performed for scenario 3 
because of very small differences between results from 
scenarios 2 and 3 and because of large computational 
demands for scenario 3. 

 
Results and Discussion 

 
Accuracy. Imputation accuracies using only local 

genotypes (scenario 1) were high (96, 96, 99, and 99%, 
when imputing from 6K, 9K, 50K, and 77K chips, 
respectively). When information from North American 
Holsteins was added to Mexican genotypes (scenario 2), the 
imputation accuracy increased almost 1 percentage point 
for 6K and 9K chips and half a percentage point for the 77K 
chip. When all genotyped North American Holstein data 
were included (scenario 3) and compared with results for 
scenario 1, an increase of approximately 2 percentage 
points was observed for 6K and 9K chips and 1 percentage 
point for the 77K chip. As expected, no reliability increase 
was found for the 50K chip in any scenario because of the 
small number of SNP that actually were imputed. These 
results were consistent with those reported in other studies 
using the same (Wiggans et al. (2012)) or different (Zhang 
and Druet (2010); Johnston et al. (2011); Kathar et al. 
2012)) imputation methods. 

 
Missing alleles. Average number of CM and HM 

markers decreased from scenario 1 to 2 to 3 (Table 1). 
Numbers of animals with CM or HM markers did not 
necessarily follow this pattern. As expected, the 50K chip 
had fewer CM and HM markers, with the latter being 
substantially lower. 

 
Table 1. Numbers of completely missing (CM) and half 
missing (HM) markers for 4 different densities of 
genotypes chips under 3 scenarios 
Chip density Scenario1 CM2 HM2 

 6,000 1  414 (183)  2,144 (183)  
2  23 (180)  1,426 (183)  
3  5 (26)  173 (183)  

 9,000 1  423 (277)  2,721 (277)  
2  18 (217)  1,615 (278)  
3  7 (25)  100 (277)  

50,000 1  391 (726)   77 (726)  
2  14 (780)  94 (874)  
3  2 (196)  5 (690)  

77,000 1  510 (820)  1,969 (820)  
2  33 (739)  1,005 (835)  
3  10 (153)  60 (815)  

1Scenario 1: 2,018 Mexican genotyped animals; scenario 2: animals from 
scenario 1 plus 886 related North American animals; scenario 3:  animals 
from scenario 1 and all North American genotyped animals (338,073). 

2Number of animals within parentheses. 
 
 
These results could be explained by the imputation 

process, because each chromosome first is divided into 
segments, all haplotypes are listed, and then all genotypes 
are matched with one from the haplotype list (VanRaden et 
al. ( 2011)). When the original genotype has more markers, 
haplotype matching is more precise and accuracy tends to 
be higher. However, the possibility of filling markers is less 
for genotypes with fewer markers. For this reason, more 
markers were filled as unknown (code 5) in the 77K 
genotypes, with an associated decrease in HM markers. 

 
The number of HM markers was greater than for 

CM markers for all scenarios regardless of chip density, 
except for animals genotyped with the 50K chip in scenario 
1. Number of HM markers followed the same pattern as 
CM markers between scenarios. However, between chips, 
the number of HM markers was greatest for the 9K chip 
followed by the 6K and 77K chips for scenarios 1 and 2. 
For scenario 3, the number of HM markers was for greatest 
for the 6K chip. The increased number of HM for the 50K 
chip for scenarios 2 and 3 could be the result of a larger 
haplotype list (because of more animals), which results in a 
better possibility of correct matches. 
 

Conflicts. Conflicts were defined as SNP that 
were predicted differently in different scenarios. In the 
imputation process, the number of conflicts is of more 
concern than CM and HM numbers. Occurrences of CM 
and HM markers are possible to detect with the associated 
decrease in number of useful markers, but conflicts can lead 



to estimation errors for future genomic studies (Weigel et 
al. (2010)). In this study, detected conflicts increased as the 
number of genotyped animals or the number of imputed 
SNP increased (Table 2). Conflict frequency never 
exceeded 3.8%, possibly because the 6K chip was the 
lowest density chip studied. 

 
Table 2. Numbers of different imputed alleles (conflicts) 
for 3 scenarios 

Chip density 
Scenarios compared1 

1 and 2  1 and 3 
 6,000  1,393   1,718 
 9,000  1,199   1,705 
50,000  12   28 
77,000  57   746 
1Scenario 1: 2,018 Mexican genotyped animals; scenario 2: animals from 
scenario 1 plus 886 related North American animals; scenario 3:  animals 
from scenario 1 and all North American genotyped animals (338,073). 
 
 

Comparison of imputed and real genotypes. The 
average CM frequency for the 6K and 9K chips (Table 3) 
was similar (nearly 1%) regardless of scenario, whereas the 
average HM frequency was higher for scenario 1 compared 
with scenario 2. Genotypes that were imputed from the 9K 
chip had more HM markers on average than those imputed 
from the 6K chip for both scenarios, but the number of 
conflicts was highest for genotypes imputed from the 6K 
chip in scenario 1 (Table 3).  

 
Table 3. Numbers of completely missing (CM) and half 
missing (HM) markers and conflicts for 2 different 
densities of genotyping chips when imputed and true 
genotypes were compared in 2 scenarios 
Chip density Scenario1 CM HM Conflicts 
6,000 1 346 2,619  1,277 

2 538 1,860  1,022 
9,000 1 346 2,906  1,181 

2 537 2,104  936 
1Scenario 1: 2,018 Mexican genotyped animals; scenario 2: animals from 
scenario 1 plus 886 related North American animals. 

 
 
When imputed and true genotypes were compared, 

the percentage of markers that were not useful [(CM + 
HM)/45,195, where 45,195 is the total number of 50K 
markers] was higher for 9K genotypes (7.2% for scenario 1 
and 5.8% for scenario 2) than those for 6K genotypes (6.6 
and 5.3%, respectively). However, 6K genotypes had a 
higher conflict rate (2.8% for scenario 1 and 2.3% for 
scenario 2) than did 9K genotypes (2.6 and 2.1%, 
respectively). For the 6K chip, similar error rates (2.7%) 
were reported when a panel of 6,000 markers was imputed 
to 45,836 markers in a reference population of 2,000 
animals (Zhang and Druet (2010)). For the 9K chip, error 
rates were slightly lower than those reported (3.6 to 5.8%) 
for imputation of 8,680 markers in a reference population of 
2,542 Jerseys (Weigel et al. (2010)). These results suggest 
that for low-density chips, imputation for 9K genotypes will 
be slightly more accurate than for 6K genotypes.  

Conclusions 
 
Imputation for Mexican Holsteins was affected by 

the size of the reference population and the number of 
markers in the original genotypes to be imputed. The 
inclusion of information from direct North American 
ancestors with genotypes in the imputation of Mexican 
Holstein genotypes increased imputation accuracy by half 
of what could be attained if genotype information from all 
North American Holsteins was included (approximately 1 
versus 2 percentage points). Numbers of missing markers 
and imputation conflicts decreased when North American 
genotypes were included. 
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